בפרק זה נעסוק באיך מפרשים מודלים ואיך מבינים את ההחלטות שלהם. תחום רחב זה נקרא Explainable artificial intelligence או Interpretable machine learning. בפרק נעסוק בטכניקות השונות שיש בתחום ובפרט ב ZF-NET, DeepDream, GradCam, Lime, Shap.
קישורים רלוונטיים:
בפרק זה נדבר על מהי Active Learning, כמה זה נפוץ ומתי ניתן לעשות זאת. נדבר על קריטריוני החלטה (Query Strategies): Least Confidence ,Margin Sampling...
בפרק זה, נדבר על מודלים ג'נרטיביים, ובפרט על מהפכת ה-GAN=Generative Adversarial Networks. איך עובד הקסם? תחרות בין מודלים - האחד שמזייף, והשני שמגלה זיופים....
בפרק זה, נדבר על Adversarial Attacks, על איך מייצרים Adversarial Examples בשיטת FGSM, על התקפות White or Black box models ונזכיר Certifiable Robustness. FGSM...