בפרק זה נעסוק בבעיה הכי שכיחה בעולם unsupervised, הרי היא בעיית ה-clustering - ניתוח אשכולות. נדבר על משפחות אלגוריתמים (top down - bottom up, soft-hard, metric/ graph/ distribution based), ונעסוק במדדי הצלחה קלאסיים (silhouette, dunn index, DB index, Rand index) ובמדדי הצלחה תלויי בעיה.
קישורים רלוונטיים:
בפרק זה נדבר על מהי Active Learning, כמה זה נפוץ ומתי ניתן לעשות זאת. נדבר על קריטריוני החלטה (Query Strategies): Least Confidence ,Margin Sampling...
בפרק זה, נארח את אופיר יוקטן - שמתעסק בניבוי התאמה של קורות חיים. אופיר יציג כיצד הוא מתמודד עם מודלים מפלים על רקע מגדרי\גזעני....
בפרק זה נארח את אלה בור, שתספר לנו על מהם גרפים (קשתות וצמתים), על בעיות המיוצגות ע"י גרפים ועל שיכון גרפים במרחב אוקלידי (GNN,...