בפרק זה נעסוק בבעיה הכי שכיחה בעולם unsupervised, הרי היא בעיית ה-clustering - ניתוח אשכולות. נדבר על משפחות אלגוריתמים (top down - bottom up, soft-hard, metric/ graph/ distribution based), ונעסוק במדדי הצלחה קלאסיים (silhouette, dunn index, DB index, Rand index) ובמדדי הצלחה תלויי בעיה.
קישורים רלוונטיים:
בפרק זה, נדבר על Adversarial Attacks, על איך מייצרים Adversarial Examples בשיטת FGSM, על התקפות White or Black box models ונזכיר Certifiable Robustness. FGSM...
בפרק זה, נעסוק ב-Neural Network Pruning, כאשר נתקמד בפרט במאמר פורץ דרך מ2019, שנקרא "THE LOTTERY TICKET HYPOTHESIS: FINDING SPARSE TRAINABLE NEURAL NETWORKS", מבית...
בפרק זה, נדבר על מודלים ג'נרטיביים, ובפרט על מהפכת ה-GAN=Generative Adversarial Networks. איך עובד הקסם? תחרות בין מודלים - האחד שמזייף, והשני שמגלה זיופים....