בפרק זה נעסוק באיך מפרשים מודלים ואיך מבינים את ההחלטות שלהם. תחום רחב זה נקרא Explainable artificial intelligence או Interpretable machine learning. בפרק נעסוק בטכניקות השונות שיש בתחום ובפרט ב ZF-NET, DeepDream, GradCam, Lime, Shap.
קישורים רלוונטיים:
בפרק זה, נדבר על מודלים ג'נרטיביים, ובפרט על מהפכת ה-GAN=Generative Adversarial Networks. איך עובד הקסם? תחרות בין מודלים - האחד שמזייף, והשני שמגלה זיופים....
בפרק זה נדבר על הורדת מימדים - Dimensionality reduction. נעסוק במוטיבציות (קללת המימדים), ובאלגוריתמים PCA, T-SNE, AutoEncoders, SOM. קישורים רלוונטיים: https://onlinecourses.science.psu.edu/stat505/lesson/11 https://distill.pub/2016/misread-tsne/
בפרק זה נדבר על למידה חיזוקית - Reinforcement Learning. נדבר על מושגי היסוד בתחום (environment, state, policy, agent, reward), על סיווג של התחום הזה...