בפרק זה נעסוק באיך מפרשים מודלים ואיך מבינים את ההחלטות שלהם. תחום רחב זה נקרא Explainable artificial intelligence או Interpretable machine learning. בפרק נעסוק בטכניקות השונות שיש בתחום ובפרט ב ZF-NET, DeepDream, GradCam, Lime, Shap.
קישורים רלוונטיים:
בפרק זה נעסוק בבעיה הכי שכיחה בעולם unsupervised, הרי היא בעיית ה-clustering - ניתוח אשכולות. נדבר על משפחות אלגוריתמים (top down - bottom up,...
בפרק זה, נסקור את ההשתלשלות של ניתוח סדרות בזמן החל מ-RNN, דרך Attention Models ועד ל-Transformers.נדבר על Self Attention, Multi Headed Attention, LSTM, RNN,...
בפרק זה נארח את אלה בור, שתספר לנו על מהם גרפים (קשתות וצמתים), על בעיות המיוצגות ע"י גרפים ועל שיכון גרפים במרחב אוקלידי (GNN,...