בפרק זה, נסקור את ההשתלשלות של ניתוח סדרות בזמן החל מ-RNN, דרך Attention Models ועד ל-Transformers.
נדבר על Self Attention, Multi Headed Attention, LSTM, RNN, GRU, Transformers ו-DeTR.
קישורים רלוונטיים:
בפרק זה, נשוחח על מהי התמרת פורייה. מוטיבציות, שימושים, Time Series והקשר ללמידה עמוקה.קישורים רלוונטיים: But what is the Fourier Transform? A visual introduction...
בפרק זה, נדבר על Adversarial Attacks, על איך מייצרים Adversarial Examples בשיטת FGSM, על התקפות White or Black box models ונזכיר Certifiable Robustness. FGSM...
בפרק זה נעסוק באיך מפרשים מודלים ואיך מבינים את ההחלטות שלהם. תחום רחב זה נקרא Explainable artificial intelligence או Interpretable machine learning. בפרק נעסוק...