בפרק זה, נעסוק ב-Neural Network Pruning, כאשר נתקמד בפרט במאמר פורץ דרך מ2019, שנקרא "THE LOTTERY TICKET HYPOTHESIS: FINDING SPARSE TRAINABLE NEURAL NETWORKS", מבית היוצר של MIT.
במאמר זה, מציעים דרך מעניינת לקצץ רשת גדולה במעל 80% מהמשקלים שלה בצורה כזו שהביצועים (ה-accuracy) לא ייפגעו. קישורים שהוזכרו בפרק:
בפרק זה נדבר על הורדת מימדים - Dimensionality reduction. נעסוק במוטיבציות (קללת המימדים), ובאלגוריתמים PCA, T-SNE, AutoEncoders, SOM. קישורים רלוונטיים: https://onlinecourses.science.psu.edu/stat505/lesson/11 https://distill.pub/2016/misread-tsne/
בפרק זה נדבר על מהי Active Learning, כמה זה נפוץ ומתי ניתן לעשות זאת. נדבר על קריטריוני החלטה (Query Strategies): Least Confidence ,Margin Sampling...
בפרק זה, התארחנו ב weel.com, ואירחנו את יגאל ויינברגר, שדיבר איתנו על AlgoTrading. שוחחנו על סוגי אלגוטריידינג (Sell side, Buy side, HFT), ועל גישות...