בפרק זה נדבר על שיטת רגרסיה, שנקראת Kriging או Gaussian process regression - שיטה בייסיאנית שהחלה במטרה לאתר מכרות זהב. נדבר על מושגי מבוא, כמו: משתנה אקראי גאוסי ותהליך אקראי גאוסי, ועל משפט הגאוסיאני המותנה. קישורים רלוונטיים:
בפרק זה, נעסוק ב-Neural Network Pruning, כאשר נתקמד בפרט במאמר פורץ דרך מ2019, שנקרא "THE LOTTERY TICKET HYPOTHESIS: FINDING SPARSE TRAINABLE NEURAL NETWORKS", מבית...
בפרק זה, נדבר על Adversarial Attacks, על איך מייצרים Adversarial Examples בשיטת FGSM, על התקפות White or Black box models ונזכיר Certifiable Robustness. FGSM...
בפרק זה, נסקור את ההשתלשלות של ניתוח סדרות בזמן החל מ-RNN, דרך Attention Models ועד ל-Transformers.נדבר על Self Attention, Multi Headed Attention, LSTM, RNN,...