בפרק זה, נעסוק ב-Neural Network Pruning, כאשר נתקמד בפרט במאמר פורץ דרך מ2019, שנקרא "THE LOTTERY TICKET HYPOTHESIS: FINDING SPARSE TRAINABLE NEURAL NETWORKS", מבית היוצר של MIT.
במאמר זה, מציעים דרך מעניינת לקצץ רשת גדולה במעל 80% מהמשקלים שלה בצורה כזו שהביצועים (ה-accuracy) לא ייפגעו. קישורים שהוזכרו בפרק:
בפרק זה, נארח את אופיר יוקטן - שמתעסק בניבוי התאמה של קורות חיים. אופיר יציג כיצד הוא מתמודד עם מודלים מפלים על רקע מגדרי\גזעני....
בפרק זה נדבר על עיבוד טקסט בעברית, ונציג כיצד הוא שונה משפות אחרות, ובפרט מאנגלית. נשוחח על ה-NLP Pipeline ועל למה הוא שבור בעברית,...
בפרק זה נדבר על מהי Active Learning, כמה זה נפוץ ומתי ניתן לעשות זאת. נדבר על קריטריוני החלטה (Query Strategies): Least Confidence ,Margin Sampling...